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THE SOLUTIONS OF A MODEL NONLINEAR SINGULAR PERTURBATION PROBLEM

HAVING A CONTINUQUS LOCUS OF SINGULAR POINTS*

Gershon Kade-(l). Seymour V. Parter(a) and Michael Steuervnlt(3)

1. Introduction

Consider the nonlincar boundary value problom

1.1) ey"(t) = (y? - thy (o), -1<t<0,
1.2) y(=1) = A, y(0) = B,
with ¢ > 0. It is not difficult to prove that thcere exists at least one solution,
y(t,e). Moreover, if y(t,e) is a solution and A # B, then Iy'(t,c)[ > 0.
The questions of interest are
() for € > 0, how many solutions are there?
(1i) what are the "limit solutions," i.e. functions Y(t) such that there are sequences
o™ 0+ and solutions y(t,cn) so that

y(t,cn) + Y(t), in some sense .

Again, it is well known that any such limit solution must satisfy the reduced
equation
1.3) o) - 2y (o) =0 a.c.

In [ 3) F. Howes and S. V. Parter studied the case Y(t) £ constant. Consider the
case
1.4) 0<B<AC<1.
Then, the only possible constant limit functions are (see [3))

1.5) Y(t) = A, Y(t) =B, Y(t) = 5? .

Y
Will also appear as Mathematics Research Center Technical Summary #1947T.
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In fact, computational results of Frances Sutton [10) imply that all three constant
limit functions occur if possible, i.e. if

1
B<— <A,
'

These computations of Sutton Prompted G. Kedem (4,5) to apply a-posteriori costimates to

this problem. He took the special case
€ " B = ,001, A= .96

and proved the existence of at least three distinct solutions.

In this paper we continue to study these questions of multiplicity of solutions
(for ¢ > 0) and limit solutions. In Section 2 ve discuss some general facts about
the solutions of this problem. In particular we discuss the occurrence of maximal and
siaimal solutions in the case where A > B.

In Section 3 we extend the results of [4,5] as follows: if p= .001, A = .96
amd 0 < ¢ < 1—’;. then there exist at least three solutions of equations (1.1), (1.2).
In fact, there is a maximal solution yu(t:.c) and a minimal solution y-(t.e) such
that: 1if y(t,e) is any solution, then
LC)- yaltie) < y(t,e) 2 yyltee) .
Noreover,

lim y"(c,t) - A, €+0,

lim y-(t,c) = B, €c=+0 .

Finally, there is a function ¥(t), not equal to A or B, ‘and there is a sequence
ol solutions y(c.tn) such that

r(totn) + Y(t) as ‘n o o« (S

In Section 4 we consider the special case A = 1, B= 0. In this case the function

1.7) yo(t.t) - -t

is a solution for all ¢ > 0. Thus we may apply results from bifurcation theory. In
particular, we may apply a theorem of Paul Rabinowitz [ 7) to conclude that: if ¢ is

small enough there are at least two distinct solutl'sus uj(t.c). vj (t,c) which cross

.
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yo(t.c) exactly j times in the interior: -1 <t < 0. A further analysis of the
limit bchavior of these solutions then pProvides infinitely many step function limit
functions.

In Section 5 we extend the analysis of Section 4 to the case 0 < A # l, B=0,

We obtain necessary and sufficient conditions for the existence of solutions with

prescribed behavior near t = -] having exactly j crossings of yo(t). The limit

behavior as ¢ + 0+ is discussed. Once more, the limit functions are step functions.
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2. Maximal and Minimal Solutions

In this scction we are concerned with the existonce of maximal and minimal solu-

tions y'.(t,t). y-(t.t) described by (1.6). Let € > 0 be fixed and let

2.1) U = {v(t) ¢ c[-1,0), min(A,B) < y(t) < max(A,B)} .

Consider the mapping T which is defincd by

2.20) cvt = v - ),

2.2b) (Tv)(<1) = A, (TV)(0) = B ,

Then, the maximum principle shows that T(U) C u. Moreover, for any te [(-1,0)

) e Al 2
(T™V) ' () = (TV) mexp(;j (vi(s) - s¥)as) .

t
Since
2.3a) min|(™v)'(s)| < |a - B] ,
2.3b) Iv3(s) - o] < max(|a|2,|8]%) +2
we have
2.4) levivter] < |a - Blcxp{“x(lll"cl'PL‘ 1} ¢

Thus, T is a compact mapping of U into itself. By the Schauder Fixed Point Theorem
(2) there is at least one solution y(t,e).
Noreover, we make the following observations.
lesma 2.1: Let A >B > 0. Let Vo ¢ U. Suppose that
2.5a) ‘No(t) _gvo(t) .

let v’(t). J =1,2,... Dbe defined by

:-”’ V,(t) - Wj__xo j - 1,2.-.- .
Then

2.5¢) vjﬂ(t) ivj(t). I =2,2... .,
Similarly, if

2.6a) Ty (t) 2 v (t)

and vj(t) is defincd by (2.5b), then

2.6p) CREAC I

-4~




Proof: We consider only the first case. We obscrve that vi(t) <0 for j ='1,2,... .

)
Supposc that
0 < vj(t) 5—"3-1“) .
Then
2 o
c:v;"‘,1 = (v’ =t )v‘,,ﬂ '
L ™ 2 s 2 (]
“j (vj_1 t )vj .
Hence
" e (vd o o2 = ' 2 _ 2 '
2.7) c(\rj+1 "j) (vj t ijﬂ "j) + (vj vj-l)vj .

Since the second term on the right hand side of (2.7) is positive, the maximum principle

asserts that

Thus, the lemma is proven.

Lesma 2.2: Let A >B >0. Let v € U and suppose that (2.5a) holds.

0
be a solution and suppose that

2.0) y(t,c) :vo(t) :
Then
2.9) yit,e) < vi(t), 4 w2, .

Proof: Assume that

y(e,€) Sv (v .
Then
" - SRR
Wj “vj-l) t ]vj
ot = 2 - Ay .
Bence

e b ol & - SR
clvy =9 Waeg =Sy, =9t + tv, “ Y02 .

Once more the maximum principle implies that

v, - >0 .
R

Let

y = y(t,c)




Iheorem 2.1: Lot A > B > 0. There exists a solution y,(t,c) which satisfics

2.10a) ylt,e) < Yy (tee)
for every solution y(t,c). Moreover, there is a solution y.(t..c) which satisfies
% 2.10b) Yaltie) < y(t,e)
. for any solution y(t,c).
Remark: Of course, it may happen that
Y- - Yu .
Proof: Let
;f vo(t) EA.
M.
V(&) < vple)
Thus
l:vjﬂ_gvj, J = 0.,,2,...

and the functions vj(t) converge to a function y“(c.c). Since the estimate (2.4)
holds we also have .

2
Iv;(t)l _f_%hzlh = Bloxp{-‘——:——’i} .

Thus, the first derivatives also converge. Finally, the differential equation implies
that the second derivatives also converge. Thus, y“(t,t) is a solution of (1.1), (1.2).
The estimate (2.10a) follows from Lemma 2.2.

The proof of the existence of y.(t.c) follows in the same way.

st it i e



3. fThe Case A = .96, B = ,001

In [4,5) G. Kedem considered the special problem (1.1), (1.2) when

3.1) A= .96, B = ,001, €= = .

15
Applying his theory (based on the Kantorovich Theorem and rigorous a-posteriori error
bounds) he was able to prove that there are at least three solutions

1 1 1 :
yIII (t, 1_,.,) < YII (t, 15) k. yI (t, 1 ) - see Figure 1. Furthermore these solutions satisfy

5
3.2a) lyj-1,35)] <A -8 =059,
3.2b) lyj0. 3501 = maxlyzce, 9] > 1,
3.3a) lyger (2o 750 | = maxly} (e, )] > 1,
3.3b) h'iu“"ll_s’l <A-B= .95 .

™~ _1_ " _1_ ?
Mozxeover, b 4 (t, 15 ), Yirr (t, 15) have exactly one zero, where YI and ¥Yyyy Cross ¥o-

1. x
II
-1 0
Figure 1

e I S A 5
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The purpose of this soction is to prove the following result.

Theorem i.1: Let A = .96, B= .001 and lot O < ¢ < 4 Then, therc are at least

15°

three solutions Yl(t,l:). Yxx(tot)o y‘u(t.t) of (1.1), (1.2). Furthermore
3.4a) Yplt 5) Sy (t€) +A as c»0s,
1
3. &) Yrppteis) 2 ¥pp (te€) +B as ¢+ 0+ .
In fact, if 0 <¢ <c, <3k then
3.5) B _‘_vnx(t.cl) S Yppplteey) < yelteey) < yx“":’ <A

The proof follows from the following argument.

Let vo(t) - yx(t. 1‘15)' Then using the properties of yx(t.-lls-), e.g. (3.2a),
(3.2b), we see that
3.6a) vV, =v >v_.

Thus, applying Lemma 2.1 we obtain a sequence v j (t) that increases to a solution

¥y(t.c) having the same derivative properties. Similarly, if we set Vot = Yo ro (t,rls-)

we find that

3.6d) ‘No - \r1 < vo

and a similar argument gives us y___(t,c) with the same properties. Finally, a simple
IIT the prope

“degree argument” gives the existence of yu(t.c).

1
Hence, let vo(t) yx(t.. 15) and let us construct vl(t) - ‘No. Let

3.7) n-%-xsu\»c). §>0.
Then
3.8a) vt = 15(1 + &) (v2 - edyv
1 0 1

wvhile
3.) vy - 1S(v: ” :’)vé A
Thus

v v
3.9a) ;%- e+ 8 v—?.

1 0




That is

146
3.9b) lvjto] = clvgor|**

To evaluate the constant C = C(§) we integrate (3.9a) and obtain (using the boundary

conditions (3.1))

0 o 148
3.10a) A-B~ [ fv; (0 |ae = e f Ivgttr | Cae ,
-1 -1
3.10b) cté) « —A=B) .
0 1+8
f lv(')(t) " T3

lemma 3.1: The following inequalities hold.
% §
3.11a) c(c)lvo(o.\l 3 3,

3.11b) e vy <1
Proof: Using (3.2b) we have
0 0
/ Iv;,(t)l“sdt / vy te) lae
12 =

$
s A-B s e I@l” .

Thus, (3.1la) follows from the boundary conditions which imply that
Q
A-8=f [vg ) fae .
-1
Prom HOlder's inequality we have
0 1+8 (]
w-nt*t. [] )vé(s)lds] <] vy |Mas
-1 =1

Thus, using (3.2a) we have

) é 1
|v6( V|% < @-p :-C—GT

which proves (3.11b).
In order to prove (3.6a) we consider the function

3.12a) F(t) = vo(t) - vl(t) .

Using (3.9b) we have




G ~ a

¢ 1468
3.12b) F(t) = vo(t) = A+ C(8) / [vgtsy 1™ "as .
-1

We wish to show that F(t) < C. We have
3.13) F(-1) = F(0) = 0 .
Moreover

F'(t) = vi(e) + C(G)Iv&(t)l“s = |v6(t)|(c(6)lv6(c)|6 -1] .

Thus, (3.11a) and (3.11b) imply that
P'(-1l) <O, F'(0) >0 .

Hence, if r(to) >0 for some t_ € (-1,0), then F'(t) would have at least three

4]
seros. If F'(t) = O, then

¥
3.14) [vgt®) | = k(&) = [1/cean” .

However, if (3.14) has at least three solutions, then Rolle's theorem implies that
v;(t) has at least two zeros. But, va(t) = y;(t. -i% has exactly one zero. Thus,
we have proven (3.2a). By the argument sketched earlier, we have obtained yI(t,t). More-
over, lyi(—l,c)l < A-B, Iyi(o.c)l =max|y'(t,e)|>1 and yy(t.,€) has exactly one zero.
In a similar way we obtain Yirr (t,e).
In order to prove the existence of a third solution we follow the argument in (1}, (9],

or [ 6). Roughly speaking, lete.

(Y(t) e c(-1,0], B b . A} ,

Q = {y(t) ¢ c[-1,0), yx(t.f;) <y <A},

8, = {y(t) € C[-1,01, B <y <y,  (ti35)) .

0\(01 v 02) .

Then
T:0-+Q
T:Q +0

T: 9 *ﬂz

-10-
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3

and, in each case, T maps the boundary into the interior. Thus, if d('r.&) dcnotes
the degree of T relative to the recgion 6 we have (sce [1,8])
a(r,n) = a(r,Q)) = a(r,a,) =1 .
Since the degree is additive,
a(r.alp - -1
and there is a solution yn(tu:) e 03.
In fact, the work of Amann (1) and Steuerwalt [9) shows that
Yyp(tee) 2y (e, II;). Yyp(te€) £y (L, 1—15-) .
These inequalities imply that any limit function Y(t) of Yrr (t,e) is truly distinct
from Y(t) = A or Y(t) = B.

Thus, we have proven Theorem 3.1.

-ll-
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4. A=), B=0

Turning to the special casc whexre A~ 1, B = 0 we see that
yo(e.c) - -t
is a solution of (1.1), (1.2) for all ¢. Let
z(t,c) = y(t,c) + ¢t ;
then if y(t,c) satisfies (1.1), (1.2) the functici =z(t,c) satisfies
4.1) ez - z(z - 2t)z' + z(z - 2t) = O, -1<t<O
4.2) z(-1,¢c) = 2(0,e) = 0 .
Morxeover, :o(t.t) 2 0 is a solution for all ¢. In this situation it is natural to
apply a bifurcation analysis. Linearizing (4.1), (4.2) about the solution 8o(t.c) £0

we have the linear eigenvalue problem

4.3) v" + Altle = 0, -1 <tc<o0
4.4) ¢(-1) = ¢(0) =0
vhare
4.5) Al .
¢

The eigenvalues and eigenfunctions of this problem are easily obtained. In fact,

let {3 } be the positive zeros of thc Bessel function J_,.(x), ordered so that
k,1/3° ) 1/3
Y13 s
Let
2
j)( 3
2 ,1(3]
4.6a) llk 3 [ 2 .
and
“3
k 9 2
4.0) L Sl Rl L MY R

Then the Ak. k =1,2,... are the eigenvalues of (4.3), (4.4) while the corresponding

eigenfunctions are given by

i 3
(=), b ()]
4.6¢c) Ok(t) ot e W Jl/J 2 . .

See (11, page 16).
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The exact values of lk and vk(t) are not of major importance here. The

important fact is the following:

Theorem 4.1: Let O < Ak < = ., Then therc are at least 2k + 1 solutions of the non-

L AL ]

linear problem (4.1), (4.2). Morecover, a special set of 2k + 1 solutions may be

described in the following manner. Of course, we have the trivial solution,

4.%7a) zo(t.:) 20. }
Then there are 2k solutions (z;(t.c)).(z;(t,c)) ¢ 3 =1,2,...,k which satisfy
a _+ a4 -
4.7b) at lj(-l.t) >0, ac zj(-l.C) <0
and l;(t.c) has exactly Jj interior nodal zeros. Moreover, z;(t,t) and z;(t.c)

have the same zeros, say tl'tz""'tj‘

Proof: From the results of P. Rabinowitz [ 7] we find that there are two unbounded
continua, C;. C;' in (2,)) space which meet at (o,xj) and have no other points in
common with the (0,1) 1line. Bach point on these continua represents a solution of
(4.1), (4.2) with exactly 3j interior zeros and the appropriate sign of 2'(-1). Since
the solutions 2(t) of (4.1), (4.2) are bounded (via the maximum principle applied to

(1.1), (1.2)) we see that these continua are bounded in Z-space and hence unbounded in A.

Thus, we have established the existence of z;(t,c) with interior nodal zeros tt

g°
However, if y(t,c) is a solution of (1.1), (1.2) then y'(t,e) < O. Thus we may
consider its inverse function g(y) defined by

gly(t,e)) = ¢t .
Finally, let

G(y) = -gly) .
A direct calculation now shows that: if y(t,c) is a solution of (1.1), (1.2) (with
A=1, B=0) then so is E(t,c) = G(t). Thus, for every z’(t.c) there is a 2 (t,c)

with the same nodal zeros: z‘ and 2~ arereflections of each other about zo.

Consider the following situation. Let j be fixed and let % + 0+ and (without

loss of generality)

2
o(c (—.
k
A

13-




Let (B;(t,tk)) be a scquence of solutions of (4.1), (4.2). Let

4.8) =l et (g ) < tle) < .o t,(ckl <0

be the zeros of ';"“x” Let

6.9) ’;“'cx) = zttg) - ¢
be the corresponding sclutions of (1.1), (1.2). Using the monotonicity of y;(t,ck)

and Helly's theorem [13]) we know that we may choose subsequences €r = which we now

call ¢ - %o that
4.10a) tgle,) + £ 0= 1,2,....9,
4.10b) o) »¥ie), as ¢ -0

. Yj "k ¢ " .

Our first goal is to show that Yt(t) cannot coincide with the straight line
Yy = =t on any interval (a,B8). The exact form of our results is a strengthening of
the observations of [ 3).
lewma 4.1: Let -1 <a <f<0. Let A ) be the smallest eigenvalue of the problem
4.11a) v" + Altle « 0, a<t<g
4.11b) v(a) =v(B) =0 .

Let ¢(t) = ¢v(t;a,8) be the corresponding eigenfunction normalized so that

4.11¢) max ¢ (t;a,B) =1 .
Suppose that
1 1
4.122) 0<c<~3—:°-z-i—.
0
Set
1

T Yo * Tmaxjyr0I] *

Let y(t,c) be a solution of (1.1) on the interval (a,8) which satisfies

4.13a) yit,e) + t >0, ac<ct<p ,
4.13b) yla,c) + a = y(B,c) + 8 =0 .

Then

4.14) ylt,c) > voo(t,a.e) -t, ac<tc<p .

-14-
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Proof: Suppose the lemma is false. Then there is a function y(t,c) which satisfies
the difforential equation (1.1) and also satisfies (4.13a), (4.13b) but not (4.14).
Nevertheleoss, there is a y, 0 < y < Yo' such that
w(t) = w(tia,p) - t < y(t,c)
and w(t) “justtouches" y(t,c). That is, either w'(-1) = y'(-1,e), or
w'(0) = y'(0,c), or there is an interior point co ¢ (-1,0) such that
V(to) - y(to.c) .

However, we will show that

4.1%5a) '1-N>', a<tc<§$
and

4.15b) vi(=1) > w'(-1)

4.15¢) vi(O) < w'(0)

which, together with Lemma 2.2, contradicts the choice of Y as "just touching." To

verify these facts we observe that
CAE RV Y
o

'l_tz_Y2’2_2wt

W' ew'-],
Thus
4.16a) e = w? -t g
vhere

Bewi-2 5 Je] - @] + witw - 1) .
0

By (4.12a), (4.12b) and the choice of y < 70 we seec that E(t) >0 for a < t < 8.
Then, by the maximum principle we have (4.15a), (4.15b) and (4.15¢).

Remark: The function ¢(t;a,B), the eigenvalue Ao. and the value Yo 4re all
continuous functions of the pair a, 8.

-18-




Lomma 4.2: Let to--l and ¢t = 0. Supposc (4.10a), (4.10b) hold. Let ¢ be

k+l
fixed, 0 < 0 <k, and suppose that

*
4.17a) y,(t,tk) +t>0, to(ck) <t < tqu(ck) .
We suppose that (4.10a), (4.10b) hold. Then
* Zene - -
4.17b) 'j“’ Brbye B XL S
Similarly, if
b 4
4.18a) yj“");’ +tc<o, t.a(:k) <t< taﬂ(ck) .
then
4 e - a -
4.18b) \’j(t) el St 8T8,
Proof: Consider the case when (4.17a) holds. If ¢ = ¢ there is nothing to prove.

Suppose then that
t.o*l-ta-l."o.
As we remarked above, to, ¢(t;a,8) and Yo are continuous functions of (a,8). Hence

for "k sufficiently small we have

1
4.19a) % <5 ‘o“k) ’
L. e
4.19b) ? Yo(tort°+1) < yo(tq(ck)'tq“l'l(:k)) ’
and
1 t

4.19¢c) v(t.tk) -3 yov(t.to(ek).tou(ck)) - Yj (t"k) .
Let

N AT ; 5
4.20) Yy(toe) + t () = v(t)exp(- ;{ v (s,e) - s%)as} .

Then, the function v(t) satisfies

4.21a) v - 12062 - ) 4 y? - e - "’—;—‘—L ty’-viv=o,
4.21b) V(to(tk’) =0,
4.2)c) '“’ou“x” - to(ck) - tou(tk) ;

=16~
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Thus, the maximum principle implies that

vier| <12

t .(c)
| 4 | £ / o1k, 2
yit,e) + tole )| < expl- 2 w(s.e ) - slas} .
t

Thus, since w(l,ck) is continuous in (tu(ck" t°+1(ck)) we obtain (4.17b).

A similar argument disposes of the case when (4.18a) is satisfied.

Thus, we see that when the €° are distinct Y;(t) is a step function with jumps

at ia for odd values of o. If 0 is even, then

+ = 2 2
Yj(t’ 5 kgt gy, - F % toer

t?

3
step function with jumps at Eo for even values of O, and if o is odd, then

Similarly, in the case of Y, (t), if the Gq are distinct we see that Y;(t) is a

Yyl = -t , toy St -
We now turn our attention to the determination of the values of éc'
Consider the following situation. Let ¢ be fixed and consider the adjacent

intervals (ta-l'to) . (t_,t ).

g° o+l
Case 1: y;(t.ck) +t>0, toy St<t
and
Yyt 42 <0, eoctet, ., (seePig. 2] .

Then

4.22a) f;y;(eq_l.ek)l <t

ana

4.22b) 4 ) <1 .

.d_c yj (t°+1p€k

«17-




y(t,e) — i

N

3
to-1 % oe1 1
;
Figure 2 3
4
Integrating (1.1) we have (y = y;(t.tk))
a a 3 %n 2 toe1 %o
& (ae ¥ tguy € = 3¢ Yitg 50} =~ & - tiy(e) +2 [ tyac
ts-1 ts-1 to-1
toe1
v2/ ty(t)de .
ts
Let % <+ 0+. Applying Lemma 4.2 we find that :
23 23 :
t -t
o-1 g+l a2 ° =
428 3 = t5(tee1 ~ tond! ¢
1f to-1 | toey VO have
Aa 1 52 - a ‘2
4.24) =3 el * Coarboer * ta -
On the other hand, if Ec—l - ;oﬂ.' then (4.24) holds also. Hence, (4.24) holds in
the limit as €& 0 when starting from a triple t.o_l(ck). to(tk). tcﬂ(tk) as in
Case 1 above.
v b
Case 2: yyltoe) + ¢ <o, toy St Sty
2
,j(t"k) +t>0, t°,<t <t°’_1' (see rtq. N . !i
It is not difficult to show that (with y(t,c) = yi(t.c)) ¥
' TN
4.2%) Iyt te e ] < .
4.2%b) ly'te . e ] < L
o+l k' = N G

-18-




PamR TN, | R TV

y(t.c) —

tcv-l to tcﬂ

Figure 3
In this case we divide by y'(t,c) and obtain

t 1 : .
) e (] - -
ck(l.nlv “ﬂl"k” tnly “o-l'tk)l) { (y tHae .
o-1
Applying Lemma 4.2 we have

a2, 1l ,~3 ~3
ta(toa1 = toa1!) = 3 (g te-1) ¢

and once more (4.24) holds. We summarize our results in
lemma 4.3: If the values ¢t (c ), o = 1,2,...,) tend to limits €° as ¢, + 0 then

these limit values satisfy the quadratic equations

-2 A a2

(t t ), 0-1020---03 0

22 1
i o-1 > tt:-l o+l * o+l

%% "3

4.26)

éo - -], E3¢1 -0 .

Finally, we show that (4.26) has one and only one solution,

et <, <o ¢ <o.

Lesma 4.4: The system (4.26) has one and only one solution €° ¢ [-1,0]. Noreover,

4.27) -1 < él < Ga < ve < Gj <0 .

Proof: Consider the mapping "o - 'a"o"x"“"ju) given by

2 1 . 3
ee -3 (‘c-l * e 10”’. 0= 12,0003 o

g /S




vhere T, =t ® =l Y4 " YHa o

itself and is obviously continuous. Thus therc is a "fixcd point" which is a solution

= 0. This mapping takes the cube, =1 < t_< 0 into

of (4.26).
Let (:c). 0 =0,1,...,J +1 be a solution. In order to verify the “separation"
of the ¢t ” i.e. (4.27) we observe that the equations (4.26) imply that

)£€:_<_ux(t2 T

wmin (t o-1 . ”1

0-1'tot1

Mouf-.l.i.i <0 and ic-;:

o’ o+l a-1" Then o+

1 satisfies the equation

-2 a a a2
tﬂl + t6t°+1 2t0 (1]

i.e.

£ 2 3k?
ev e [+] ]
o+l 2 2

b Sl o

Thus, if two successive ?.o are equal, they are all equal. But that is impossible.
Reace

-1<e1<t3

and a straightforward inductive argument proves (4.27).
Suppose E¢ and ic are both solutions of (4.26). Let
v-:;o-;, N =t +38_ .

g (] o (] [}

Then

4.28a) vo-o, vj-o.

and

4.28b) Ww --1-(w + =W )w +-1—(w +SW L )w
00 3 "o+l 2 o-1l" o+l 3 o=l 2 o+l 0o-1

Let W Dbe the tridiagonal matrix

1 1 1 1
13 Moey * 2%y “Nor 5 Mgy *+32 Yall -
-20-
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Clearly, W is irrceducible. We will now show that

4.29) vl 23 <lw

oul ) l'o-xh i

Since Eo' :° arc of the same sign, it suffices to show that (4.26) implies that

4.30) 18,1 2 3 tlE,, 0 ¢ 15,0 -

This estimate follows immediately from (4.26) and the well-known inequality

- - a2 -2
4.31) R’ 8,8 8 .
Moreover, since the inequality in (4.31) is strict unless eo-l - Eoﬂ we see that,

in fact,

1
AARS LSRN

and the matrix W is diagonally dominant. However, we have
W =20,
thus w = (vo) = 0 (see [12]) and the lemma is proven.
Let us collect these results.
Theorem 4.2: For ¢ small enough, there exists fy;(t.t” a family of solutions of

(1.1), (1.2) with exactly j interior turning points tc(cl. i.e.

4.320) y;(tott).c) ==t o), o= 1,200 &
and

4.32b) f% y;(—l,c) * ol

Then

4.33) e el » €q. 0% 1,2,..4,3 ,

vhere the €° are the unique solutions of (4.26). Moreover, y;(t.c) =+ Y(t), a step

function with jumps at Go, o odd, and

4.34) Y(t) = -ta. tv—l <t < "oﬂ' o even .

Also, for ¢ small enough, there exists (y;(t.c)) a family of solutions with 3J

interior turning points tq(:) and

4.35) 3‘; yj

(-1") < =1

-21-
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and ¢ (e) » €° as above. Morecover, y(t,c) > Y(t), a step function with

jumps at Eg.c even, and

4.36) Y(e) = -Eo. t . <t<t ¢ odd .

-1 o+l’

Remark: The results of [3) are nov seen to be a special case of the above results.

The number -la appears there in precisely the same way as the N o occur above.
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S. B=0, A#¥1

Suppose we keep B = 0 and vary A. That is, let A = A(x) be a continuous
function of x with A(0) = 1. The question is, what happens to the solutions

y; (t,e)? For example, when 0 < A < e there cannot be a sequence g * 0 with

3
y(t,e ) » 2 .
“n /3
Thus, that family is lost as A decreases. While we cannot give a complete discussion
of the behavior of these solutions in terms of both variables A, e, an almost
complete answer is given by the following observation.
+
Suppose {y (t,e)} is a family of solutions of the differential equation (1.1)

on the larger interval [g(e),0] with B(e) < -1 which satisfy

(1) yi(BrC) = =0 ,
(14) &reos>a1 Ly,

and y*(t,e) has exactly Jj turning points on the interval 8(g) < t < 0. (The
existence of such solutions is guaranteed by the discussion of Section 4.) Suppose
further that

vi-1,0 =a.
Then, if all of the turning points actually lie in the smaller interval (-1,0), we
have obtained the solutions we seek. As we shall see, this is essentially the only

wvay to obtain such solutions. This fact is the result of the following four theorems.

Theorem 5.1: Let O <A <1, B=0, Let j be a fixed positive integer. Let

t:'ta""'tjﬂ be the solution of

a2 1 ,-~2 a a : a2 =
5.1) %73 G PRt Sl KT 2030ed
5.2) = §,-0,
Let
t, - Ahxn? - 3€:
503) ; to = - 2 .

Then, there exists an ¢ = €o(A) such that for all €; 0 < ¢ < ¢, there is a solu-

o

0




tion y(t,c)

< t € e < ¢

i, Mhalh j

o' .
< (y(tj

5.4) 0

if and only if

5.5)

Moreover, if (5.5) holds then as

of (1.1), (1.2) which has exactly j interior turning points,

€) = -tj) and

> y'(-l't) > --}

t°<-l.

€ =+ 0+ we have

5.6) tl(t) *>-A= k) .

5.7) tk(" -»> tko k = 2'3)"‘03 *

while y(t,c) » Y(t), the step function given by

5.8) Xe) = -t 0 b <ty k=0,1,2,..0k,

vhere £, = -1 anda k=3 (- 1.

Mote: If j is even, then k is a half integer and the last interval is actually
Itj'tj+1]'

Theorem 5.2: Let O <A <1, B=0, Let j be a fixed positive integer. Let

:1.22,...,ej be the solution of

~2 o l 02 L) -~ .2 i
5.9) S "3 o * St t el k=1,2,....3,
5.10) i-'.o - -1, Gjﬂ =0 .

Then, there exists an ¢ =

0 co(a)

y(t,e)

-1 < t1 € ece ¢ tj <0 (Y(tjUC) I
5.11)
if and only if

5.12)

such that for all €, 0 <€ < ¢

0

of (1.1), (1.2) which has exactly j interior turning points

tj) and

y'(-1l,¢) < -2

-§1<A-

Moreover, if (5.12) holds then as ¢ = 0+ we have
t

is the step function given by (5.8).

5.13)

tk(c) >

while y(t,e) + Y(t) where Y(t)

k= 1,2...-,5

there is a solution




Theorem 5.3: Let 1 <A, B=0. Llet j be a fixed positive integer. Let

a -

tl'tz""'tj be the solution of (5.9) with

5.14) Go = -A, Ejﬂ =0 .

Then, there is an ¢, = ¢,(A) such that for all €, 0 < ¢ < g, there is a solution

0
y(t,e) of (1.1), (1.2) which has exactly j interior turning points tk(e),

k=1,2,...,3 and
1
5.15) 0> y'(-1l,e) > - 2

if and only if

5.16) -1 < El <0.

Moreover, if (5.16) holds then as ¢ -+ 0+ we have

5.17) tle) > £, K=1,2,....3 i
wvhile y(t,e) + Y(t), the step function given by
5.16a) o) =A,  -lst<E
and
" ~ P : ‘-
5.18b) Y(t) = “tox’ toe-1 ¢ < ‘nu' k=1,2,...,k

vhere l-:-g-.

Theorem 5.4: Let 1 <A, B=0. Let j be a fixed positive integer. Let

tl.ez,....t- be the solution of (5.9), (5.10). Let

b
B i & = M2 - 3t]
5.19) ty = - 3 :

Then there exists an ¢ = eo(A) such that for all €, 0 < € £ €0’ there is a

0
solution y(t,e) which has exactly j interior turning points tl,tz.....tj and

5.20) Y'("'l,t) < =2 v
if and only if

5.21) -to >A .

Moreover, if (5.21) holds ¢ (e) + Ek. kK =1,2,..., while y(t,e) » Y(t], the step
function given by (5.8).

The proofs of these theorems follow.

25~ \




Lemma 5.1: Let O = B < A, Let y(t.cn). €. + 0+ be a sequence of solutions of
(1.1), (1.2) which also satisfy (5.11) and have exactly 3j interior turning points

~
-1 < tl(cn) < tz(cn) LK (Cn) < 0. Then the points tk(cn) - "k' k= 1,2,..003

b
vhere the Ek satisfy (5.9), (5.10) and y(t,c) =+ Y(t), thc step function given

by (5.8).

Proof: This lemma follows from the arguments of Section 4. The distinction is simply
that in Section 4 we have Theorem 4.1 to assure the existence of certain special
solutions. :

Lemma 5.2: Let O = B < A, Let y(t,;n), €n ¢ O+ be a sequence of solutions of
(1.1), (1.2) which also satisfy (5.4) and have exactly Jj interior turning points

-1 < tl(d < *** < tj“) < 0. Then the points tk(cn) - :'k' k=1,2,...,3. If

-~ -

0 <A <1 the points t satisfy (5.1), (5.2) and if A > 1 the points t satisfy
(5.9), (5.14). Moreover, the functions y(t.cn) converge to the functions Y(t)
described in Theorem 5.1 and Theorem 5.3 respectively.
Proof: As in the lemma above, this lemma follows from the arguments of Section 4.
Lemma 5.3: O =B <A <1, Let y(t.cn) be a sequence of solutions of (1.1), (1.2)
which also satisfy the hypotheses of Lemma S.2. Then y(t,en) may be continued back-
wards in ¢t < -1 until yl(t,c ) crosses the curve y = -t. Let this first turning
point less than -1 be called to(cn). Conceivably to(cn) = e foxi all L
However, this is not the case. 1In fact, let €k be the solutions of (5.1), (5.2)
and let to be given by (5.3); then
5.22) to(cn) > to .
Proof: Since y'(t.tn) < 0 the backward continuation of y(t.cn) is above A for
all t < =), Therefore y(t,c) is bounded: A < ylt,c) < -t as long as y(t,e)
does not cross y = -t. Thus y(t.cn) may be continued backwards at least until
such a crossing.

As ¢ <+ 0+ we have

tltc) - ti = =p, tatt) -ty y'(ta(tn).tn) < -2,




tl (tn)

v'(tl(cn).:n) - y‘(tz(cn).cn)exp{-i- f (y2 - tz)dt} &
t_(c)
2 n
Since
tl(cn) : . 2
{ : " - thae > ~(eyle ) -t (e )
€)
2''n
we have
1 2
5.23) ly* teye ) oe 2| 2 2 expl- 2 Teyte) = & (e %) .

Suppose y(t.tn) remains below -t for t < -1. Then on any finite interval

B<t< t, (e,) we would have

y(t.tn)"h, ’:t:tl v
y'(t,e) 20 a<t<g
*n . o e - R (i
However, in that case, if B < -1 we have
" ~ e & 2,1 -2l
ly* e )| > 1im 2 expf c (g =~ &) +‘n n-a%|sly .

Thus, if IBI is large enough
ly*eie )| + += .

Therefore, there must be a finite crossing to(cn). Moreover, this argument shows

that for L small enough

2" %)

§o= A

2(¢

ltgte) | < +1.

Let to be any limit point of the to(c n). An argument similar to the arguments
of Section 4 shows that the values tk“)' k=1,2,...,J must converge to the

solutions of (5.9) with éo - to. But the results of Lemma 5.2 determine the limits

of the tk(cn). Thus, t  must be given by (5.3).

0

llary: Since by construction, t_ < -1, we have established one-half of

0
Theorem 5.1.
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Lemma 5.4: Suppose O = B < A <1 and (5.5) holds. For cvery 8, 0 <8 < 3 . i

there exists an ¢ = ¢(8) such that for all ¢, O < € < €, thore is a point

Tev(e), t, - 8§ < v < ty * ¢ and a function y(t;tv,e) which satisfies :
s.24a) oy = ty? - Ay, r<t<o0, :
S.24b) y(tT,€) = -1, y(0;v,c) =0,

S.24c) yl=1;7,€) = A 3

and y(t;t,c) has exactly J turning points tk(c), k=1,2,...,) with -1 < tk(c) < 0.

Proof: For every T, t, - §<t« to 8§, let tl.tz,....tj be the solutions of
2. 1 .2 2
S.25a) w3 (tk-l. MR B SR e (o TR e
$.25b) T " T 1j*1 -0,
Since LY is uniquely determined by to and 10 is uniquely determined by T wvhen

we consider the equations (5.25a) with given, we see that t‘l is a

D1
monowone function of T "Thus, if we choose To ¢ to and let y(tno.c) be a

solution of (5.24a), (5.24b) with exactly Jj turning points and y’(tono,c) < -1, 4
whose existence is guaranteed by (a simple modification of) Theorem 4.1, then for ¢

sufficiently small

y(-lvto.c) <A and =1 < tltc) .

Similarly, if to < i

y(tﬂo.c) which is a solution of (5.24a), (5.24b) having exactly J turning points and

we will obtain (for ¢ sufficiently small) a function

v(-lno.c) > A, -1 < tl(c) .

Thus, there is an intermediate t, which solves the problem,

(]
Proof of Theorem 1: In the light of Lemma 5.2 and Lemma 5.3 it is only necessary to

establish that (5.5) is a sufficient condition to guarantee that, for ¢ small
enough, there is a solution of (1.1), (1.2) which has exactly j interior turning

points. This result follows immediately from Lemma 5.4.




Proof of Theorem 5.2: The necessity of (5.12) follows immecdiately from Lemma 5.1
and the maximum principle, which implies that all solutions of (1.1), (1.2) satisfy
B <y(te) <A.

Suppose (5.12) holds. Let

& - 2- 3e?

1

(5.26) €, == el

-1 2
The proof of Theorem 5.2 now follows precisely as in the proof of Lemma 5.4, We

~ ~
<t . and 1 >t and obtain the desired solutions which pass through

0 1 0 -1
(-1,A) and are very steep at that point.

choose T

Proof of Theorem 5.3: If y(t,e) is a solution of (1.1), (1.2) which satisfies (5.15)
then it certainly can be continued backward until it crosses y = -t. The reason is
‘that y"(t,e) < O between t = -1 and any such crossing. Thus, movtn§ backward

IY' (t,c)| gets smaller and y(t,c) crosses y = -t at a value 1;_1(0:) which satisfies

-2A +1 < t-l(t) < =1 .

Purthermore, as ¢ + 0, t._l(c) + -A. Looking at these solutions and applying the
arguments of Section 4, we see that (5.16) must hold.
The sufficiency of (5.16) follows from the argument of Lemma S5.4.

The proof of Theorem 5.4 now follows the same lines as the proof of Theorem 5.3.




$. Roemarks

The discussion of the case when B * 0 appears to be much more difficult. As
long as B = 0 and we enlarge our basic interval by moving to the left we may
continue to employ the theorem of Rabinowitz and general Sturm-Liouville theory.
When we attempt to enlarge the interval to include some positive t the linearized
equation (4.3) is no longer correct (-t * |t|) and the general Sturm-Liouville
theory becomes more delicate, We have not attempted a complete mathematical discus-
sion of this case.

For this reason, the results of Section 3 and further computational results are
particularly interesting. The graphs which follow are computational results for
%- R = 150 and the two sets of boundary conditions
6.1) A=T, = B=0,
6.2) A= ,9, B = ,001 .
We find the "CASE 5" curves especially interesting.

These calculations were performed at the University of Rochester on the CDC 6600.
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1)

Y(T)

¥eE)

Ru(Y(T)ww2-(T-1)um2)uY(T)"

A= .96 B=.001 R=150.0 CRSE:= 1

Yer) e

-

T

Ru(Y(T)um2-(T-1)wm2)uxY(T)"®

R=1.00 B=.000 R=150.0 CRSE:= 1

2

-3]-




YOT)'' = RutYUIT)wm2-(T=-1)un2)uY(T)"*
Rz .96 B=.001 R=150.0 CRSE= 2

Yii)

-

T

YOT)'® = RmlY(T)wm2-(T-1)1mm2]lumY(T)"®
A=1.00 B=.000 R=15S0.0 CRSE= 2

¥ii)
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YOT)'® = RelY(T)muw2-(T-1)wnu2)xY(T)"
A= .96 B=.001 R:=150.0 CASE:= 3

Y(T)

T

YOT)®® = Ru(Y(T)mm2-(T-1)ux2)xY(T)"
A=1.00 B=.000 R=150.0 CASE= 3

YL E)

-33-
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YL k)

i &

YOT)'® = Rue(Y(T)wm2-(T-] )um2)wY(T)"*
Rz .96 B=.001 R=150.0 CRSE:= 4

e

T

YOT)'® = Ru(Y(T)um2-(T-1)un2)xY(T)"®
R=1.00 B=.000 R=150.0 CASE:= 4

e




YOT)'' = Ru(Y(T)Imu2-(T-1)ww2)uY(T)"
A= .96 B=.001 R=150.0 CRSE= S

-
>
YOT)®® = Rm(Y(T)mm2-(T-])un2)nY(T)"
R=1.00 B=.000 R=150.0 CRSE= S
-
) -

=35~
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